minerals

All minerals are rocks, but not all rocks are minerals.

Chemical Composition of Gemstones

Here’s a neat infographic from Compound Interest (one of my favorite websites) that describes 16 different gemstones and why they have different colors. It also includes their chemical formulas and hardness on the Mohs scale.

Many gemstones would be colorless or a different color if not for the presence of small amounts of transition metals such as chromium or titanium. For example, you can see that aquamarine and emerald both have the same chemical formula Be3Al2(SiO3)6, but emeralds are green because of chromium ions replacing some of the aluminum ions and aquamarines are blue because of iron 2+ or 3+ ions replacing some of the aluminum ions. Click through to read the whole article, because there are many other ways that gems and minerals get their colors!

Angelwing Chalcedony

Article by special guest author David Reed

a long flowing wing-shaped rock appearing to be made of several small tubes, with red and blue colors.

From the collection of David Reed, photo by Stephanie Reed

This refers to a surface chalcedony formation characterized by groups of chalcedony filaments often intricately woven or connected together, so they resemble the feathers of a wing or flowing hair. They occur most often in the center of a vug or vein of agate, but can also occur in the center of a hollow thunderegg. These formations are usually found in Idaho or Oregon. It describes this type of surface chalcedony formation, regardless of whether the underlying formation is plume agate, tube agate, or moss agate. See below for several close-ups, all from the same specimen.

Close-up of red tube formations

Photo by Stephanie Reed

Close-up of blue and orange tubes

Photo by Stephanie Reed

Lots of chalcedony filaments all pointing the same way

Photo by Stephanie Reed

The tubes in Angelwing Chalcedony seem to follow the direction of flow of the silica-bearing fluid in air within the vug. They may form in similar fashion to the directional helictites (gypsum formations) in Lechugilla Cave (and elsewhere), or they may be directional helictites which were silicified.

Lechuguilla_Chandelier_Ballroom

Lechuguilla Chandelier Ballroom photo by Dave Bunnell

long squiggly white directional helictites

Directional Helictites Photo by Dave Bunnell

Although it looks similar, Angelwing Chalcedony is not the radiating tubes found in fossils of certain coral heads.  Angelwing Chalcedony was never alive, but the coral was. During mineralization, the form of the living coral was maintained, but the structure was changed from mostly calcite to mostly silica, and some of the voids were filled. The structure of the fossil is more regular; there was no irregular flow of fluid through a void, as there was with the Angelwing Chalcedony. The fossil specimen below was found eroding out of a Florida riverbed. It was purchased, to avoid diving with the alligators.

A round brown chunk of tiny tubes of coral with a white crust on the outside

From the collection of David Reed, photo by Stephanie Reed

Canadian Rocks on Display

Tanya at Dans Le Lakehouse has a neat collection of minerals from Canada that she’s had since childhood. She wanted to enjoy her shiny pretty rocks, but they were stored in an opaque cardboard box. One day, she found this glass box that was the same size as the original box and lined it with felt. Then she arranged the specimens by color and hid the name and locality tags underneath the felt. I don’t know why she thinks this is nerdy. Now the rock collection sits on her husband’s desk, adding color to the room. Read her blog post for more details.

What a neat way to display a colorful set of minerals! I think the sodalite and the red jasper are the most eye-catching. Which mineral is your favorite?

Scepter Quartz

Article by Amir Chossrow Akhavan, http://www.quartzpage.de/gro_text.html

A scepter quartz is often defined as a quartz crystal that has a second generation crystal tip sitting on top of an older first generation crystal. The second generation tip typically becomes larger than the first generation tip, but might also become smaller. A scepter can be shifted sideways and does not need to be centered on the first generation tip.
However, there is a problem with a definition that is based on the idea of a second generation: scepters do not only occur as a second generation on an older crystal, they also form stacks of parallel grown crystals that developed at the same time, very often as skeleton quartz. Another difficult case are reverse scepters in which the scepter is smaller than the underlying tip. Here the smaller tip very often does not show any properties that clearly distinguish it from the rest of the crystal and that would justify calling it a second generation. Instead, the crystals often appear to have grown continuously into the reverse scepter or multiple scepter shape.

In all cases, the scepter develops from the already present crystal lattice of the crystal underneath. Thus, to be a scepter quartz, the “second generation” crystal’s a- and c-axes need to be oriented parallel to the respective axes of the “first generation” crystal; just one crystal on top of another doesn’t make it a scepter. Such a crystallographically well defined intergrowth of different minerals is called an epitaxy. In a sense, a scepter represents an epitaxy of quartz on quartz, and because it is the same mineral, it is sometimes called an autotaxy.

Scepters are quite common in certain geological environments. Amethyst from alpine-type fissures in igneous and highly metamorphosed rocks usually occurs as scepters on top of colorless or smoky crystals (not only in the Alps, but for example also in southern Norway or northern Greece). Here, the amethyst generation grew at lower temperatures than the first generation quartz. The same growth form can be observed in pegmatites and miaroles in igneous rocks (for example, amethyst scepters from the Brandberg, Namibia, or from pegmatites in Minas Gerais, Brazil).

Scepters, or to be precise, the “second generation” part of a scepter quartz that defines it, commonly have a number of morphological properties:

  • Scepters are commonly of normal habit and are never tapered. The underlying “first generation” crystal may show a Tessin habit, but the scepter on it will not.
  • Scepters tend to assume a short prismatic habit. An apparent exception are reverse scepters and the normal scepters associated with them, which may occur as elongated extensions of a “first generation” crystal, but then in the shape of multiple stacked scepters.
  • Many scepters show only a weak striation on their prism faces, sometimes it is even missing.
  • Scepters do not show split growth patterns.
  • Scepters rarely show trigonal habits with very small or missing z-faces. An exception are reverse scepters and the normal scepters associated with them.
  • Scepters are often associated with skeleton growth forms (skeleton or window quartz).
  • Scepters commonly show a color, color distribution, diapheny and surface pattern that is markedly different from the underlying “first generation” crystal. Often they are more colorful and transparent. Amethyst scepters are very common, smoky quartz scepters -often with uneven color distribution- are common. An exception are reverse scepters and the normal scepters associated with them which seem to either not differ from the “first generation” or show gradual transitions.
  • Summarizing the exceptions above: Reverse scepters and the normal scepters associated with them seem to have a different set of properties.

Formation

One theory is that a scepter forms when crystal growth is interrupted and parts of the crystal are covered with some material that inhibits further growth. The growth inhibiting material might be only present as a very thin layer and invisible. The very tip of the crystal or the entire rhombohedral faces remain free of that material, and should the conditions change again, the crystal continues to grow from the tip.

One of the problems with that theory is that you would expect to see a larger number of “double”, “triple” or “quadruple scepters”, specimen in which the growth had been interrupted several times and in which scepters with slowly changing habits are stacked. In nature, however, you see a strong dominance of “simple” scepters that consist of just a prism with “a single head”. If you see multiple scepters, then often alongside simple scepters, although multiple changes in the environment should have affected the morphology of all of them equally.

Another problem is that you would not expect to see a fully-grown scepter that encloses the former tip like an onion if the crystal simply started growing from a single point on the surface of the tip. Such a crystal would finally grow into an elongated crystal and would at best assume the shape of a reverse scepter.

As I’ve mentioned, amethyst from igneous and metamorphic rock locations all over the world predominantly occurs as scepters. Even if you just take Alpine locations, it is hard to imagine that the environmental conditions in all those locations have undergone a single sudden change that led to a temporary growth inhibition on the crystals, followed by a very distinctive growth pattern, the formation of scepters.

The internal structure of scepters from Alpine-type fissures (and of scepters in general) is perhaps always lamellar, as opposed to the macromosaic structure of many quartz crystals from Alpine-type fissures. Quartz crystals with a macromosaic structure may carry a scepter, but the scepter will then show lamellar structure.

Fossil Sweet Gum

A big slab of petrified wood that is green

Photo by Stephanie Reed

This is a cross-section of a fossilized sweet gum tree from the Hampton Butte in Crook County, Oregon. We saw it at the Rice Museum in Hillsboro, Oregon where it is in the petrified wood room. I hardly ever see petrified wood that is green like this; usually it’s red, orange, or brown. Anybody know what makes it green?

Corundum

Corundum (Al2O3) is a hematite group mineral that has trigonal crystals. It is found all over the world and can be many different colors including blue, red, pink, yellow, gray, and colorless. These corundum crystals are from the Cascade Canyon in San Bernadino, California. They may not look familiar to you, but corundum has some famous relatives. A gem-quality corundum that is red (Cr-bearing) is known as ruby, and a gem-quality corundum that is blue (Fe- and Ti-bearing) is known as sapphire.